# UNIVERSITY OF MUMBAI No. UG/116 of 2016-17

# **CIRCULAR:**-

A reference is invited to the Syllabi relating to the B.Sc. degree course, <u>vide</u> this office Circular No. UG/126 of 2011, dated 13<sup>th</sup> June, 2011 and the Principals of affiliated Colleges in Science are hereby informed that the recommendation made by Ad-hoc Board of Studies in Biotechnology at its meeting held on 18<sup>th</sup> February, 2016 has been accepted by the Academic Council meeting held on 24<sup>th</sup> June, 2016 <u>vide</u> item No. 4.88 and that in accordance therewith, the revised syllabus as per the Choice Based Credit System for F.Y. B.Sc. Biotechnology (Sem. I & II), which are available on the University's web site (<u>www.mu.ac.in</u>) and that the same has been brought into force with effect from the academic year 2016-17.

MUMBAI – 400 032 October, 2016



To,

The Principals of the affiliated Colleges in Science.

A.C/4.88/24.06.2016

\*\*\*\*\*\*\*\*\*\*

No. UG/116 - A of 2016

MUMBAI-400 032

25 October, 2016

Copy forwarded with Compliments for information to:-

1) The Deans, faculties of Science,

2) The Convener, Ad-hoc-Committee in Biotechnology,

3) The Professor-cum-Director, Institute of Distance & Open Learning (IDOL)

4) The Director, Board of College and University Development,

5) The Co-Ordinator, University Computerization Centre,6) The Controller of Examinations.

(Dr.M.A.Khan)

(Dr.M.A.Khan) REGISTRAR

PTO..

# SEMESTER I

# **Chemistry I**

| COURSE CODE                                  | TITLE                                                                                                                                                                                                                                                                                                   | CREDITS     | Notional |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| USBT                                         | Basic Chemistry I                                                                                                                                                                                                                                                                                       | 2           | Hours    |
| Unit I<br>Nomenclature and<br>Classification | NomenclatureandClassificationofInorganic Compounds:Oxides,Salts,Acids,Bases,Ionic,Molecular and Coordination Compounds                                                                                                                                                                                  | 15 lectures |          |
|                                              | Nomenclature and Classification of<br>Organic Compounds: Alkanes, Alkenes,<br>Alkynes, Cyclic hydrocarbons, Aromatic<br>compounds, Alcohols and Ethers,<br>Aldehydes and Ketones, Carboxylic acids<br>and its derivatives, Amines, Amides, Alkyl<br>halides and Heterocylic compounds                   |             |          |
| Unit II<br>Water and Buffers                 | <b>Chemistry of Water:</b><br>Properties of Water, Interaction of Water<br>with solutes (Polar, Non-polar, Charged),<br>non-polar compounds in water – change in<br>its structure and the hydrophobic effect, role<br>of water in biomolecular structure and<br>function and water as a medium for life | 15 lectures |          |
|                                              | <b>Solutions</b> : Normality, Molarity, Molality,<br>Mole fraction, Mole concept, Solubility,<br>Weight ratio, Volume ratio, Weight to<br>volume ratio, ppb, ppm, millimoles,<br>milliequivalents (Numericals expected).                                                                                |             |          |
|                                              | <b>Primary and Secondary Standards</b> :<br>Preparation of standard solutions Principle<br>of Volumetric Analysis.                                                                                                                                                                                      |             |          |
|                                              | Acids and Bases: Lowry-Bronsted and<br>Lewis Concepts. Strong and Weak Acids<br>and Bases - Ionic product of Water -<br><i>pH,pKa, pKb</i> . Hydrolysis of Salts.                                                                                                                                       |             |          |
|                                              | <b>Buffer solutions</b> – Concept of Buffers, Typ<br>es of buffers, Derivation of Henderson equat<br>ion for acidic and Basic buffers, Buffer actio<br>n, Buffer capacity. (Numericals expected.) p<br>H of buffer solution.                                                                            |             |          |
| Unit III<br>Titrimetry and Gravimetry        | <b>Titrimetric Analysis</b> : Titration, Titrant,<br>titrand, End point, Equivalence point,<br>Titration Error ,Indicator , Primary and<br>Secondary standards characteristics and<br>examples                                                                                                          | 15 lectures |          |

| Precipitation, Complexometric titration.<br>Acid – base titrationStrong Acid Vs Strong<br>Base -Theoretical aspects of titration curve<br>and end point evaluation.                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Theory of Acid –Base Indicators, Choice and suitability of Indicators.                                                                                                                                                                                                                                           |  |
| Gravimetric Analysis:<br>Solubility and Precipitation, Factors<br>affecting Solubility, Nucleation, Particle<br>Size, Crystal Growth, Colloidal State,<br>Ageing/Digestion of Precipitate. Co-<br>Precipitation and Post-Precipitation.<br>Washing, drying and ignition of Precipitate.<br>(NumericalsExpected). |  |

# Chemistry II

| COURSE CODE                | TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CREDITS     | Notional<br>Hours |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
| USBT                       | Bioorganic Chemistry I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2           | 110015            |
| Unit I<br>Chemical Bonds   | <ul> <li>Chemical Bonds:</li> <li>Ionic bond: Nature of Ionic bond, structure of NaCl, KCl and CsCl, factors influencing t he formation of ionic bond.</li> <li>Covalent Bond: Nature of covalent bond, st ructure of CH4, NH3, H2O, shapes of BeCl<sub>2</sub>, BF3</li> <li>Coordinate Bond: Nature of coordinate bo nd,</li> <li>Non Covalent bonds: van Der Waal's force s: dipole - dipole, dipole - induced dipole.</li> <li>Hydrogen Bond: Theory of hydrogen bondi ng and types of hydrogen bonding (with exa mples of RCOOH, ROH, salicyladehyde, a mides and polyamides).</li> </ul> | 15 lectures |                   |
| Unit II<br>Stereochemistry | <ul> <li>Isomerism – Types of isomerism:<br/>constitutional isomerism (chain, position<br/>and functional) and stereoisomerism,<br/>Chirality.</li> <li>Geometric Isomerism and Optical<br/>Isomerism:Enantiomers, diastereomers, and<br/>racemic mixtures cis-trans, threo, erythro<br/>and meso isomers.Diastereomerism (cis-<br/>trans isomerism) in alkenes and<br/>cycloalkanes (3 and 4 membered ring)</li> <li>Conformation: Conformations of ethane.<br/>Difference between configuration and<br/>conformation.</li> </ul>                                                             | 15 lectures |                   |

|                                   | <ul> <li>Configuration, asymmetric carbon atom, stereogenic/ chiral centers, chirality, representation of configuration by "flying wedge formula"</li> <li>Projection formulae – Fischer, Newman and Sawhorse. The interconversion of the formulae.</li> </ul>                                                                                         |             |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Unit III<br>Analytical Techniques | Methods of Seperation<br>Precipitation, Filtration, Distillation and<br>Solvent Extraction.<br>Analytical Techniques<br>Chromatography:<br>Definition, Principles of Chromatography.<br>Types of Chromatography:<br>Introduction to Paper Chromatography,<br>Thin Layer Chromatography, Column<br>Chromatography and its Applications.<br>Colorimetry: | 15 lectures |  |
|                                   | Principle, Beer-Lambert's law.                                                                                                                                                                                                                                                                                                                         |             |  |

## **SEMESTER I**

## **Basic Life I**

| COURSE CODE                                                                   | TITLE                                                                                                                                                                                                                                                                                                  | CREDITS     | Notional<br>Hours |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
| USBT                                                                          | Biodiversity and Cell Biology                                                                                                                                                                                                                                                                          | 2           |                   |
| Unit I<br>Origin of Life and Biodiversity<br>(Animal,Plant,<br>Microorganism) | Origin of Life, Chemical and Biology<br>Evolution, Origin of Eukaryotic cell.<br>Concept of Biodiversity, Taxonomical,<br>Ecological and Genetic Diversity and it<br>s Significance<br>Introduction to Plant Diversity:<br>Algae, Fungi, Bryophyta, Pteridophyta,<br>Gymnosperms and Angiosperms (with | 15 lectures |                   |
|                                                                               | one example each)<br>Introduction to Animal<br>Diversity:Non-Chordates and<br>Chordates with at least one<br>representative examples.                                                                                                                                                                  |             |                   |

| Unit II                                                | Introduction to Microbial Diversity<br>Archaebacteria, Eubacteria, Blue-green<br>Algae, Actinomycetes, Eumycota-<br>habitats, Examples and Applications.<br>Ultrastructure of Prokaryotic cell:<br>Concept of Cell Shape and Size.Detail                                                                                                                                                                                                                                                                                                        |             |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Ultra Structure of Prokaryotic<br>and Eukaryotic Cell. | structure of Slime Layer, Capsule,<br>Flagella, Pilli,Cell Wall(Gram Positive<br>and Negative), Cell Membrane,<br>Cytoplasm and Genetic Material<br>Storage Bodies and Spores                                                                                                                                                                                                                                                                                                                                                                   | 15 lectures |  |
|                                                        | Ultrastructure of Eukaryotic Cell:<br>Plasma membrane,<br>Cytoplasmic Matrix, Microfilaments,<br>Intermediate Filaments, and<br>Microtubules<br>Organelles of the Biosynthetic-<br>Secretory and Endocytic Pathways –<br>Endoplasmic Reticulum & Golgi<br>Apparatus.<br>Lysosome, Endocytosis, Phagocytosis,<br>Autophagy, Proteasome<br>Eucaryotic Ribosomes, Mitochondria<br>and Chloroplasts<br>Nucleus –Nuclear Structure, Nucleolus<br>External Cell Coverings: Cilia And<br>Flagella<br>Comparison Of Prokaryotic And<br>Eukaryotic Cells |             |  |
| Unit III<br>Bacteria and Viruses                       | <ul> <li>Bacteria : Classification, Types,<br/>Morphology (Size, Shape and<br/>Arrangement) Cultivation of Bacteria.<br/>Reproduction and Growth (Binary<br/>Fission, Conjugation and Endospore<br/>formation) Growth kinetics. Isolation<br/>and preservation. Significance of<br/>Bacteria</li> <li>Viruses :General characters,<br/>Classification (Plant, Animal and<br/>Bacterial Viruses) Structure and<br/>Characterization of Viruses and<br/>Significance of Viruses and</li> </ul>                                                    | 15 lectures |  |

**Basic Life II** 

| COURSE CODE | TITLE                       | CREDITS | Notional<br>Hours |
|-------------|-----------------------------|---------|-------------------|
| USBT        | <b>Microbial Techniques</b> | 2       |                   |

| Unit I                              | <b>Microscopy and Stains</b><br>Microscope- Simple and Compound: |             |  |
|-------------------------------------|------------------------------------------------------------------|-------------|--|
| Microscopy and Stains               | Principle. Parts, functions and                                  | 15 lectures |  |
|                                     | Dark field and Phase contrast                                    |             |  |
|                                     | microscope                                                       |             |  |
|                                     | Stains and staining solutions-Definition                         |             |  |
|                                     | of dye and chromogen. Structure of dye                           |             |  |
|                                     | and fixative. Natural and synthetic dyes.                        |             |  |
|                                     | Simple staining, Differential staining                           |             |  |
|                                     | and acid fast staining with specific                             |             |  |
|                                     | examples                                                         |             |  |
| 11-:4 11                            | Sterilization and                                                |             |  |
| Unit II<br>Sterilization Techniques | and Disinfection                                                 |             |  |
| Stermzation reeninques              | Types and Applications                                           |             |  |
|                                     | Dry Heat, Steam under pressure,                                  | 15 lectures |  |
|                                     | Gases, Radiation and Filteration                                 |             |  |
|                                     | Chemical Agents and their Mode of                                |             |  |
|                                     | Action - Aldenydes, Halogens,<br>Quaternary Ammonium Compounds   |             |  |
|                                     | Phenol and Phenolic Compounds,                                   |             |  |
|                                     | Heavy Metals, Alcohol, Dyes, and                                 |             |  |
|                                     | Detergents                                                       |             |  |
|                                     | Ideal Disinfectant Examples of                                   |             |  |
|                                     | Disinfectants and Evaluation of                                  |             |  |
|                                     | Disinfectant                                                     |             |  |
|                                     | Nutrition and Cultivation of                                     |             |  |
| Unit III                            | Microorganisms                                                   |             |  |
| Nutrition, Cultivation and          | Nutritional Requirements : Carbonm                               |             |  |
| Enumeration of<br>Microorganisms    | Oxygen, Hydrogen, Nitrogen,<br>Phosphorus Sulphur and Growth     | 15 lectures |  |
| When our guillishis                 | Factors.                                                         | 15 lectures |  |
|                                     | Classification of Different Nutritional                          |             |  |
|                                     | Trypes of Organisms.                                             |             |  |
|                                     | Design and Types of Culture Media.                               |             |  |
|                                     | Simple Medium, Differential, Selective                           |             |  |
|                                     | Concept of Isolation and Methods of                              |             |  |
|                                     | Isolation. Pure Culture Techniques                               |             |  |
|                                     | Growth and Enumeration                                           |             |  |
|                                     | Growth phases, Growth Curve.                                     |             |  |
|                                     | Arithmatic Growth and Growth Yield.                              |             |  |
|                                     | and Turbidostat                                                  |             |  |
|                                     | Enumeration of Microorganisms- Direct                            |             |  |
|                                     | and Indirect Methods                                             |             |  |
|                                     | Preservation of Cultures- Principle and                          |             |  |
|                                     | Methods. Cryogenic Preservation                                  |             |  |
|                                     | Advantages and Limitations                                       |             |  |

## SEMESTER I

## **Biotechnology I**

| COURSE CODE                | TITLE                                    | CREDITS     | Notional |
|----------------------------|------------------------------------------|-------------|----------|
|                            |                                          |             | Hours    |
| USBT                       | Introduction to Biotechnology            | 2           |          |
|                            | History and Introduction Of Biotech      |             |          |
| Unit I                     | nology                                   |             |          |
| Scope and Introduction to  | What is Biotechnology? Definition of B   | 15 lectures |          |
| Biotechnology              | iotechnology, Traditional and Modern     |             |          |
|                            | Biotechnology,                           |             |          |
|                            | Branches of Biotechnology- Pharmaceu     |             |          |
|                            | tical Biotechnology, Plant, Animal Biot  |             |          |
|                            | echnology, Marine Biotechnology, Indu    |             |          |
|                            | strial Biotechnology, Environmental bio  |             |          |
|                            | technology.                              |             |          |
|                            | Biotechnology research in India. Biotec  |             |          |
|                            | hnology in context of developing world.  |             |          |
|                            | Public perception of Biotechnology       |             |          |
|                            | Ethics in biotechnology and IPR          |             |          |
|                            | -Industrial production of Antibiotics,   |             |          |
| Unit II                    | enzymes, organic acids ,vitamins,        |             |          |
| Introduction to Industrial | amino acids, beverages and single        |             |          |
| Biotechnology              | cellproteins                             |             |          |
|                            |                                          | 15 lectures |          |
|                            | Food Biotechnology                       |             |          |
| Unit III                   | Biotechnology application to food        |             |          |
| Introduction to Food       | stuffs Career in Food Biotechnology      |             |          |
| Biotechnology              | Activities of Food Biotechnologist       |             |          |
|                            | Unit Operation in Food Processing        | 15 lectures |          |
|                            | Quality Factors in Preprocessed Food     |             |          |
|                            | Food deterioration and its control       |             |          |
|                            | Rheology of Food products                |             |          |
|                            | Microbial role in food products Yeast,   |             |          |
|                            | Bacterial and other microorganisms       |             |          |
|                            | based process and products               |             |          |
|                            | Modern Biotechnological regulatory as    |             |          |
|                            | pects in food industries Biotechnology a |             |          |
|                            | nd Food : A Social Appraisal             |             |          |

# **Biotechnology II**

| COURSE CODE | TITLE                                    | CREDITS     | Notional |
|-------------|------------------------------------------|-------------|----------|
|             |                                          |             | Hours    |
| USBT        | Molecular biology                        | 2           |          |
|             | DNA replication in prokaryotes and euk   |             |          |
| Unit I      | aryotes-                                 |             |          |
| Replication | Semi-conservative DNA replication,       | 15 lectures |          |
| _           | DNA polymerases and its role,            |             |          |
|             | E.coli chromosome replication,           |             |          |
|             | BidirectionalReplication of circular DN  |             |          |
|             | A molecules.                             |             |          |
|             | Rolling circle replication, DNA replicat |             |          |
|             | ion in Eukaryotes                        |             |          |
|             | DNA recombination –                      |             |          |
|             | Holliday model for Recombination         |             |          |
|             | Definition and Types of Mutations. Mut   |             |          |
| Unit II     | agenesis and Mutagens. (Examples of P    |             |          |

| Mutation and DNA repair      | hysical, Chemical and Biological Mutag<br>ens)<br>Mutation- Definition, Classification of<br>Mutation, Types of Point Mutations,<br>Mutagen- Physical and Chemical<br>Mutagens and Mode of Action<br>Photoreversal, Base Excision Repair, N<br>ucleotide Excision Repair, Mismatch R<br>epair, SOS Repair and Recombination<br>Repair.                                                                                                                                                                                                                                           | 15 lectures |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Unit III<br>r-DNA technology | Experimental evidences forDNA and R<br>NA as genetic material.<br>Chromosome Structure in Prokaryotes a<br>nd Eukaryotes : Structure of Functional<br>state of E.coli Chromosome, Chemical<br>Composition of Eukaryotic Chromosom<br>es, Levels of DNA Packaging in Eukary<br>otic Chromosomes, Nucleosome, Centr<br>omere and Telomeres . Chromosome B<br>anding                                                                                                                                                                                                                | 15 lectures |  |
|                              | Control of gene expression and gene<br>complexity in Prokaryotes and<br>Eukaryotes., Genetic Engineering in<br>Ecoli and other Prokaryotes, Yeast,<br>Fungi and Mammalian Cells<br>Enzymes- DNA Polymerases,<br>Restriction Endonucleases, Ligases,<br>Reverse Transcriptases, Nucleases,<br>Terminal Transferases, Phosphatases<br>Cloning Vectors-Plasmids,<br>Bacteriophage Vectors, Cosmids,<br>Phagemids,<br>Vactors for Plant and Animal Cells                                                                                                                             |             |  |
|                              | Shuttle Vectors for Plant and Ammar Cens,<br>Shuttle Vectors, YAC Vectors,<br>Expression Vectors<br>Isolation and Purification of DNA<br>(Genomic, Plasmid) and RNA,,<br>Isolation of Gene of Interest-<br>Restriction Digestion, Electrophoresis,<br>blotting,, Cutting and Joining of DNA,,<br>Methods of Gene Transfer in<br>Prokaryotic and Eukaryotic Cells<br>Model Organism for Genetic Analysis o<br>f Development.<br>Development results from Differential<br>Gene expression. Genetic study: Geneti<br>c Regulation of the development of the<br>Drosophila body plan |             |  |

| COURSE CODE                                          | TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CREDITS     | Notional<br>Hours |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
| USBT                                                 | Bioorganic Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2           | Hours             |
| Unit I                                               | Carbohydrates:Structure, Function,Classification,Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                   |
| Biomolecules:<br>Carbohydrates and Lipids            | Reactions, physical and Chemical<br>properties, D & L Glyceraldehydes,<br>structure of monosaccharide,<br>disaccharides, and polysaccharides.<br>Isomers of monosaccharides,<br>chemical/physical properties of<br>carbohydrate, chemical reactions for<br>detection of mono., di and<br>polysaccharides,<br>Lipids:Classification of Lipids,<br>Properties of saturated, unsaturated<br>fatty acids, rancidity, and<br>hydrogenation of oils<br>Phospholipids: lecithin cephalin,<br>plasmalogen | 15 lectures |                   |
|                                                      | Triacylglycerol: structure and function<br>Sterols: Cholesterol: structure and fun<br>ction, Lipoproteins: structure and fun<br>ction, Storage lipids, Structural lipids,<br>Action of phospholipases, Steroids<br><b>Proteins and Amino acids</b> :                                                                                                                                                                                                                                              |             |                   |
| Unit II<br>Biomolecules:<br>Proteins and Amino acids | Classification, preparation and propert<br>ies, isoelectric point, peptide synthesis<br>Proteins: Classification based on struct<br>ure and functions, primary structure,<br>N-terminal (Sanger and Edmans meth<br>od) and C-terminal analysis (enzyme),<br>Reactions of amino acids, Sorenson's t<br>itration, ninhydrin test.<br>Denaturation of protein Structure of p<br>eptides.<br>Titration curve of amino acids.<br>Concept of Isoelectric pH, zwitter ion.<br>Glycoproteins              | 15 lectures |                   |
| Unit III<br>Biomolecules:<br>Nucleic Acids           | <b>Nucleic Acids:</b> Structure, function of<br>Nucleic acids, properties and types of<br>DNA, RNA. Structure of Purine and P<br>yrimidine bases Hydrogen bonding bet<br>ween nitrogeneous bases in DNA Diff<br>erences between DNA and RNA, Stru<br>cture of nucleosides, nucleotides and p<br>olynucleotides.                                                                                                                                                                                   | 15 lectures |                   |

# Chemistry II

| COURSE CODE | TITLE           |         | CREDITS | Notional<br>Hours |
|-------------|-----------------|---------|---------|-------------------|
| USBT        | Basic Chemistry |         | 2       |                   |
|             | Thermodynamics: | System, |         |                   |

| Unit I<br>Thermodynamics                     | Surrounding, Boundaries Sign<br>Conventions, State Functions, Internal<br>Energy and Enthalpy: Significance,<br>examples, (Numericals expected.)<br>Laws of Thermodynamics and its<br>limitations, Mathematical expression.<br>Qualitative discussion of Carnot cycle<br>for ideal gas and mechanical<br>efficiency. Laws of thermodynamics<br>as applied to biochemical systems.                                                                         | 15 lectures |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
|                                              | Concept of Entropy, Entropy for isobaric, isochoric and isothermal processes.                                                                                                                                                                                                                                                                                                                                                                             |             |  |
| Unit II<br>Chemical Kinetics                 | <b>Reaction kinetics:</b> Rate of Reaction,<br>rate constant, Measurement of<br>Reaction Rates Order & Molecularity<br>of reaction, Integrated rate equation of<br>first and second order reactions (with<br>equal initial concentration of<br>reactants). (Numericals expected)<br>Determination of order of reaction by<br>a) Integration method b) Graphical<br>Method c) Ostwald's Isolation Method<br>d) Half Time method. (Numericals<br>expected). | 15 lectures |  |
| Unit III<br>Oxidation Reduction<br>reactions | Atomic Chemistry<br>Principals of Oxidation & Reductio<br>n Reactions -Oxidising and Reducing<br>agents, Oxidation number, Rules to as<br>sign Oxidation numbers with example<br>s ions like oxalate, permanganate and<br>dichromate. Balancing redox reactions<br>by ion electron method Oxidation, Re<br>duction, Addition and Substitution, Eli<br>mination Reactions.<br>Synthesis of molecules                                                       | 15 lectures |  |

## SEMESTER II

#### **Basic Life I**

| COURSE CODE | TITLE                         | CREDITS | Notional<br>Hours |
|-------------|-------------------------------|---------|-------------------|
| USBT        | Physiology and Ecology        | 2       |                   |
|             | Photosynthesis, Intracellular |         |                   |

| Unit I            | organization of photosynthetic system.                                        | 15 1        |  |
|-------------------|-------------------------------------------------------------------------------|-------------|--|
| Plant Physiology  | photosynthesis, photosynthetic                                                | 15 lectures |  |
|                   | pigments, role of light. Hill reaction                                        |             |  |
|                   | and its significance, light reactions,<br>cyclic and non-cyclic photo induced |             |  |
|                   | electron flow, energetics of                                                  |             |  |
|                   | photosynthesis, photorespiration, dark                                        |             |  |
|                   | C-4 pathway                                                                   |             |  |
|                   | T                                                                             |             |  |
|                   | Plant hormones - Auxin ,Gibbrellins,                                          |             |  |
|                   | Introduction to Secondary Metabolites                                         |             |  |
| T                 | Physiology of Digestion                                                       |             |  |
| Animal Physiology | Movement of food and absorption,                                              |             |  |
|                   | Secretary functions of alimentary                                             |             |  |
|                   | canal, digestion and absorption in gut                                        | 15 lectures |  |
|                   | Digestion in Ruminant and                                                     |             |  |
|                   | Monogastric Animals                                                           |             |  |
|                   | Excretion and Osmoregulation,                                                 |             |  |
|                   | Physiology of Respiration,                                                    |             |  |
|                   | Mechanism of Respiration                                                      |             |  |
|                   | Physical principles of gaseous                                                |             |  |
|                   | exchange transport of $O_2$ and $CO_2$ in the blood and body flyids           |             |  |
|                   | the blood and body fluids                                                     |             |  |
|                   | Respiration in Birds                                                          |             |  |
|                   | Blood and Circulation :Blood                                                  |             |  |
|                   | of its Constituents                                                           |             |  |
|                   | Blood Coagulation and anti-                                                   |             |  |
|                   | coagulants<br>Hemoglobin and its Polymorphism                                 |             |  |
|                   | Regulation of the circulation                                                 |             |  |
|                   | Mechanism and working of Heart in                                             |             |  |
|                   |                                                                               |             |  |
|                   | Reproduction :<br>Gonidal Hormones and their Function                         |             |  |
|                   | in Male and Female, Reproductive Cy                                           |             |  |
|                   | cle in Animals,<br>Asayual Paproduction: Ergen                                |             |  |
|                   | entation and Budding.                                                         |             |  |
|                   | Sexual reproduction                                                           |             |  |
|                   | Study of Reproductive Organs in Eart hworm                                    |             |  |
|                   |                                                                               |             |  |
|                   |                                                                               |             |  |
| TT . *4 TTT       | Ecology and Biogeography.                                                     |             |  |
| Unit III          | Ecosystems, Definition and Compone                                            |             |  |

| <b>Ecosystem and Interactions</b> | nts,                                    |             |  |
|-----------------------------------|-----------------------------------------|-------------|--|
|                                   | Structure and Function of Ecosystems.   |             |  |
|                                   | Aquatic and terrestrial ecosystems, Bi  | 15 lectures |  |
|                                   | otic and Abiotic factors, Trophic level |             |  |
|                                   | s, Food chain and Food web, Ecologic    |             |  |
|                                   | al Pyramids (Energy, biomass and Nu     |             |  |
|                                   | mber)                                   |             |  |
|                                   | Nutrient Cycle and Biogeochemical cy    |             |  |
|                                   | cles: water, Carbon, Oxygen, Nitrogen   |             |  |
|                                   | and Sulphur.                            |             |  |
|                                   | Interactions: Commensalism, Mutualis    |             |  |
|                                   | m, predation and Antibiosis, Parasitis  |             |  |
|                                   | m.                                      |             |  |
|                                   |                                         |             |  |

## **Basic Life II**

| COURSE CODE                     | TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CREDITS     | Notional<br>Hours |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
| USBT                            | Genetics                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2           | 10015             |
| Unit I<br>Genetics Fundamentals | GeneticsMendels Laws of heredityMonohybrid cross: The principleof dominance and segregation.Dihybrid cross: The principle ofIndependent assortment.Application of Mendel'sPrinciplesPunnett Square.Mendel's Principle in HumanGenetics.Incomplete dominance and codominance.Multiple alleles.Allelic series.Variations among the effect of themutation.Genotype andphenotype.Environmental effect on theexpression of the Human Genes.Gene Interaction.Epistasis. | 15 lectures |                   |
| Unit II<br>Microbial Genetics   | Microbial Genetics<br>Genetic analysis in bacteria- prototro<br>phs, auxotrophs.<br>Bacteriophages: lytic and lysogenic d<br>evelopment of phage.<br>Mechanism of genetic exchange in Ba<br>cteria:<br>Conjugation; Transformation; Transd<br>uction; (Generalized transduction, Spe<br>cialized Transduction)<br>Bacterial transposable elements.                                                                                                                | 15 lectures |                   |
| Unit III<br>Population Genetics | <b>Population Genetics</b><br>Genetic structure of populations – gen<br>otypic frequencies and allelic frequenc<br>ies,                                                                                                                                                                                                                                                                                                                                           |             |                   |

| Hardy- Weinberg law and its assumpti<br>ons<br>Genetic variations in populations- Me<br>asuring genetic variation at protein lev<br>el and measuring genetic variations at<br>DNA level<br>Natural Selection. | 15 lectures |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Role of population genetics in Consev<br>ation biology                                                                                                                                                        |             |  |

## SEMESTER II

# **Biotechnology I**

| COURSE CODE           | TITLE                                    | CREDI    | Notional |
|-----------------------|------------------------------------------|----------|----------|
|                       |                                          | TS       | Hours    |
| USBT                  | Tissue Culture and Communication         | 2        |          |
|                       | Skills                                   |          |          |
|                       | <b>Basics of Plant Tissue Culture</b>    |          |          |
| Unit I                | Cell theory, Concept of cell culture,    |          |          |
| Plant Tissue Culture  | cellular totipotency,                    | 15       |          |
|                       |                                          | lectures |          |
|                       | Organization of plant tissue culture     |          |          |
|                       | laboratory :                             |          |          |
|                       | Equipments and instruments               |          |          |
|                       | Aseptic techniques: Washing of           |          |          |
|                       | glassware, Media sterilization,          |          |          |
|                       | Aseptic workstation, Precautions to      |          |          |
|                       | maintain aseptic conditions.             |          |          |
|                       |                                          |          |          |
|                       | Culture medium: Nutritional              |          |          |
|                       | requirements of the explants, PGR's and  |          |          |
|                       | their in vitro roles, Media preparation  |          |          |
|                       | Callus culture technique: Introduction,  |          |          |
|                       | principle, protocols, Genetic variation  |          |          |
|                       | and applications.                        |          |          |
|                       | <b>Basics of Animal Tissue Culture</b>   |          |          |
| Unit II               | Introduction                             |          |          |
| Animal Tissue Culture | Cell culture techniques,                 |          |          |
|                       | Equipment and sterilization              |          |          |
|                       | methodology.                             | 15       |          |
|                       | Introduction to animal cell              | lectures |          |
|                       | cultures:Nutritional and physiological:  |          |          |
|                       | Growth factors and growth                |          |          |
|                       | Parameters. General metabolism and       |          |          |
|                       | Growth Kinetics                          |          |          |
|                       | Primary cell cultures : Establishment    |          |          |
|                       | and maintenance of primary cell cultures |          |          |
|                       | of adherent and non-adherent cell lines  |          |          |
|                       | with examples.                           |          |          |

|                                                            | Application of cell cultures :                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Unit III<br>Scientific Writing and<br>Communication Skills | Application of cell cultures :<br>Communication Skills<br>Introduction to communication<br>Elements, definitions, scope of<br>communication and communication as<br>part of science<br>Communication elementsVerbal and<br>nonverbal communications.<br>Principles of effective communication,<br>Oral presentations<br>Scientific reading, writing &<br>presentation<br>Scientific writing<br>Process of Scientific writing: thinking,<br>planning, rough drafts<br>and revising context. | 15<br>lectures |  |
|                                                            | Introduction to scientific reports and<br>writings<br>Compilation of experimental data,<br>Communication methods in science,<br>Examples of Scientific and Unscientific<br>writing.<br>Writing papers, reviews, Bibliography<br>PlagiarismIntroduction to Plagiarism ,<br>Examples of Plagiarism.                                                                                                                                                                                          |                |  |

# **Biotechnology II**

| COURSE CODE | TITLE                                  | CREDI    | Notional |
|-------------|----------------------------------------|----------|----------|
|             |                                        | TS       | Hours    |
| USBT        | Enzymology, Immunology and             | 2        |          |
|             | Biostatics                             |          |          |
|             | Definition, Classification, Nomenclatu |          |          |
| Unit I      | re, Chemical Nature, Properties of Enz |          |          |
| Enzymes     | ymes,                                  | 15       |          |
|             | Mechanism of Enzyme action,            | lectures |          |
|             | Active sites, Enzyme specificity,      |          |          |
|             | Effect of pH, Temperature, substrate c |          |          |
|             | oncentration on enzyme activity,       |          |          |
|             | enzyme kinetics, Michelis-Menten equ   |          |          |
|             | ation,                                 |          |          |
|             | types of enzyme inhibitions-Competiti  |          |          |
|             | ve, Uncompetitive, Non-competitive,    |          |          |
|             | allosteric modulators Co-Factors,Zym   |          |          |
|             | ogens,                                 |          |          |
|             | Immobilized Enzymes                    |          |          |
|             | Application of enzymes                 |          |          |
|             | Introduction to Immunology             |          |          |
| Unit II     |                                        |          |          |
| Immunology  | Overview of Immune Systems, Cell and   |          |          |
|             | Organs involved, T and B cells.        |          |          |
|             | Innate immunity, Acquired immunity,    | 15       |          |

|                           | Local and Herd Immunity, Humoral<br>and Cellular immunity - Factors<br>influencing and mechanisms of each.                                                                                                                                                                                                                                                                                                                                              | lectures       |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|                           | Antigens and Antibodies: Types of<br>antigens, General properties of<br>antigens, Haptens and Superantigens<br>Discovery and Structure of antibodies<br>(Framework region) Classes of<br>immunoglobulins, Antigenic<br>determinants.<br>Antigen-Antibody Interactions<br>Hypersensetivity<br>Monoclonal antibodies,<br>Vaccines (Live, Killed) and Toxoid.<br>Problems with traditional vaccines,<br>Impact of Biotechnology on vaccine<br>development. |                |  |
| Unit III<br>Biostatistics | Defination and Importance of Statistic<br>s in Biology<br>Types of Data, Normal and Frequency<br>Distribution<br>Representation of Data and Graphs (B<br>ar Diagrams, Pie Charts and Histogra<br>m, Polygon and Curve)<br>Types of population sampling<br>Measures of Central tendency (For Ra<br>w,                                                                                                                                                    | 15<br>lectures |  |
|                           | Ungroup & group Data)<br>Mean<br>Median<br>Mode<br>Measures of Dispersion<br>Range, Variance, Coefficient of Varia<br>nce.<br>Standard Derivation.<br>Standard Error.                                                                                                                                                                                                                                                                                   |                |  |

| Unit I<br>Nomenclature and Classification |
|-------------------------------------------|
| Unit II<br>Water and Buffers              |
| Unit III<br>Titrimetry and Gravimetry     |

| Unit I<br>Chemical Bonds          |
|-----------------------------------|
| Unit II<br>Stereochemistry        |
| Unit III<br>Analytical Techniques |

| Unit I<br>Biomolecules: Carbohydrates and Lipids     |
|------------------------------------------------------|
| Unit II<br>Biomolecules:<br>Proteins and Amino acids |
| Unit III<br>Biomolecules:<br>Nucleic Acids           |

| Unit I<br>Thermodynamics     |  |
|------------------------------|--|
| Unit II<br>Chemical Kinetics |  |

## Unit III Oxidation Reduction reactions

# SEM I

1. Characterization of organic compounds containing only C, H, O elements (no element test) - Compounds belonging to the following classes: carboxylic acid, phenol, aldehyde/ketone, ester, alcohol, hydrocarbon

2. Characterization of organic compounds containing C, H, O, N, S, halogen elements (element tests to be done)

3. Compounds belonging to the following classes: Amine, Amide, Nitro compounds, Thiamide, Haloalkane, Haloarene

4 to 6. Qualitative analysis of Inorganic compounds - Three experiments

1. Determination of strength of HCI in commercial sample

2. To standardise commercial sample of NaOH using KHP (Potassium hydrogen pthalate)

3. To standarisecommerical sample of HCI using borax.

- 4. Determination of alkalinity of water sample
- 5. Determination of strength of HCl in commercial sample
- 6. Preparation of buffer solutions

1. Determination of acetic acid in vinegar by titrimetric method

2. Determination of the amount of Mg (II) prresent in the given solution complexometrically

3. Determination of the amount of Fe (II) prresent in the given solution titrimetrically

4. Determination of amount of NaHCO3 + Na2CO3 in the given solid mixture titrimetrcially

5. Determination of percent composition of BaSO4 and NH4CI in the given mixture gravimetrically

6. Determination of percent composition of ZnO and ZNCO3 in the given mixture gravimetrically

Unit volume & weight measurements

Molarity, molality, normality

pH measurement

Reagent Preparation & biochemical calculations

Optical activity of a chemical compound by polarimeter

Conductometry

Safety Measures and practices in chemistry laboratory

## SEM II

- 1. Seperation of Cu, Ni and Fe using paper chromatography
- 2. Amino acids paper chromatography
- 3. Determination of fluoride ion using colorimetry
- 4. Determination of Fe (III) by using salicylic acid by colorimetric titration

1. To determine enthalpy of dissolution of salt like KNO3

2. Determine the rate constant for hydrolysis of ester using HCl as a catalyst 3. To determine the rate constant for the hydrolysis of ester using H2SO4 as catalyst using scientific calculator by Regression analysis

4. To determine the rate constant for the saponification reaction between ethyl acetate and NaOH by back titration method

5. Study the kinetics of reaction between thiosulphate ion and HCI

6. Study reaction between potassiompersulphate and potassium periodide kinetically and hence to determine order of reaction

1. Study the reaction between NaHSO3 and KMnO4 and balancing the reaction in acidic, alkaline and neutral medium

2. Study transfer of electrons (Titration of sodium thiosulphate with potassium dichromate)

3. Determination of the volume strength of hydrogen peroxide solution by titration with standardised potassium permagnate solution

4. Determination of Fe (II) and Fe (III) in the given mixture titrimetrically

5. Determination of amount of K oxalate and oxalic acid in the given solution titrimetrcially

Spot test for carbohydrates & amino acids Isolation of starch from potato

Isolation of protein from plant source

Isolation of oil from plant source

Estimation of protein by Biuret method

Estimation of protein by Lowry method

Estimation of Reducing sugar by DNSA method

Saponification of fats

Enzyme assay (amylase)

Thin layer chromatography for lipids

Thermochemistry

Determination of an order of reaction

Area titrations

| <b>Unit I</b><br>Origin of Life and Biodiversity<br>(Animal, Plant, Microorganism) |  |
|------------------------------------------------------------------------------------|--|
| Unit II<br>Ultra Structure of Prokaryotic and Eukaryotic Cell.                     |  |
| Unit III<br>Bacteria and Viruses                                                   |  |

4

3

Unit I Microscopy and Stains Unit II Sterilization Techniques Unit III Nutrition, Cultivation and Enumeration of Microorganisms

9

| Unit I<br>Plant Physiology             |
|----------------------------------------|
| Unit II<br>Animal Physiology           |
| Unit III<br>Ecosystem and Interactions |

10

| Unit I<br>Genetics Fundamentals |
|---------------------------------|
| Unit II<br>Microbial Genetics   |

## Unit III Population Genetics

### Sem I Life Science

Cell wall staining Growth curve of <u>E.Coli</u> Preservation of culture (Glycerol stock) Enumeration by Breed's count Enumeration of microorganisms by serial dilution, pour plate, spread plate method Sterilization of media using autoclave Gram staining Differential staining Study of microscope and its parts Isolation techniques: T-streak, polygon method

#### Sem II Life Science

Hill's reaction

Absorbance maxima of plant pigments

Blood grouping study

Study of Animal tissues

Study of pseudopodia (Amoeba)

Study of respiratory system in cockroach (trachea)

Problems in Mendelian genetics

Determination of Allelic and genotype frequencies

Study of effect of mutagens (colchicine, UV)

Earthworn practicals (nerve ring)

5

#### Unit I Scope and Introduction to Biotechnology

#### Unit II

| mer oudeenom to maastriar broteennorog, | Introduction | to | Industrial | Biotec | hnology |
|-----------------------------------------|--------------|----|------------|--------|---------|
|-----------------------------------------|--------------|----|------------|--------|---------|

# Unit III Introduction to Food Biotechnology

6

| Unit I<br>Replication              |  |
|------------------------------------|--|
| Kepication                         |  |
| Unit II<br>Mutation and DNA repair |  |
| Unit III<br>r-DNA technology       |  |

11

| Unit I<br>Plant Tissue Culture                          |
|---------------------------------------------------------|
| <b>Unit II</b><br>Animal Tissue Culture                 |
| Unit III<br>Scientific Writing and Communication Skills |

12

| Unit I<br>Enzymes |
|-------------------|
| Unit II           |
| Immunology        |
|                   |
| Unit III          |
| Biostatistics     |

## Sem I Biotechnology

Estimation of starch by Willstater's method Estimation of glucose by DNSA method Fermentative production of citric acid Analysis of milk- Methylene blue Resazurin test Phosphatase test Determination of alcohol content Qualitative test for biomolecules-Anthrone & Molisch's test for carbohydrates Estimation of protein by Biuret method DNA estimation by DPA method RNA estimation by Orcinol method Isolation of organism causing Food spoilage

#### Sem II Biotechnology

PTC: Preparation of stock solutions,

Preparation of Media

Surface Sterilization of explants

Inoculation for callus culture

Media Preparation and sterilization (ATC)

Determination of cell viability by haemocytometer

Extraction of enzyme amylase

Determination of optimum pH for amylase activity

Determination of optimum Temperature for amylase activity

Effect of substrate concentration on enzyme activity

Preparation of review reports of 5 Scientific Papers and presentation (last 5 years)

Laboratory organization-layout assignment

Biostatistics: Biometric analysis for mean, median, mode, standard deviation (e.g. leaves, hair length)

Data representation, frequency polygon, histogram, pie diagram