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ABSTRACT: The proton-conducting performances of a microporous Ti-based metal−
organic framework (MOF), MIP-207, were successfully tuned using a multicomponent
ligand replacement strategy to gradually introduce a controlled amount of sulfonic acid
groups as a source of Brönsted acidic sites while keeping the robustness and ecofriendly
synthesis conditions of the starting material. Typically, multivariate sulfonic-based solids
MIP-207-(SO3H-IPA)x-(BTC)1−x were prepared by combining various ratios of trimesate
1,3,5-benzenetricarboxylate (BTC) moieties and 5-SO3H-isophthalate (SO3H-IPA). The
best sulfonic-MOF candidate that combines structural integrity with high proton
conductivity values (e.g., σ = 2.6 × 10−2 S cm−1 at 363 K/95% relative humidity) was
further investigated using ab initio molecular dynamics simulations. These calculations
supported that the −SO3H groups act as proton donors and revealed that the proton
transfer mechanism results from the solvation structure of protons through the fast
Zundel/hydronium interconversion along the continuous H-bonded network connecting
the adsorbed water molecules.

KEYWORDS: proton conduction, multivariate metal−organic framework, Ti metal−organic framework, sulfonic-functionalized linker,
proton transfer mechanism

■ INTRODUCTION

Reduction in fossil fuel consumption and related greenhouse gas
emissions calls for the development of clean and renewable
energy systems. Fuel cells are high-potential technologies in a
low-carbon future, enabling energy storage and transportation
with the lowest environmental impact.1 Several classes of fuel
cells have been developed for various applications, e.g.,
automotive, stationary, and portable power. In particular,
proton-exchanged membrane fuel cells (PEMFCs) show many
advantages, combining ecofriendly features with high energy
conversion efficiency, high power density, and fast start-up.2

One of the biggest bottlenecks of PEMFCs is the selection of the
optimal electrolyte that permits the proton ions to pass between
the electrodes while avoiding agents from mixing together.
Indeed, this key component is given great attention, especially
with the development of new ion-exchange membrane electro-
lytes combining high efficiency with durability at reduced cost.
So far, the perfluorosulfonic acid polymers Nafion have been
considered as a benchmark owing to their high durability, high
proton conductivity at ambient conditions, good electronic
insulation, very good oxidative stability, and excellent
mechanical resilience.3 However, their large-scale attractiveness
is hindered because of high cost, poor dimensional stability, high
fuel permeability, complex synthesis process, and above all a
substantial drop of the conductivity performances at high
temperature (T > 353 K). Alternative polymers4,5 bearing

sulfonic groups have been explored to replace Nafion, such as
derivatives based on polyimide,6 poly(benzimidazole),7 aro-
matic poly(ether ether ketone),8 and poly(arylene ether
sulfone),9 as well as multiblock or blend polymers.5,10,11

Meanwhile, nanocomposite membranes using a range of fillers
dispersed into the sulfonated polymer matrix have been equally
investigated,4,12 including carbon nanomaterials,13 heteropolya-
cids,14 titanium oxide,15 zirconium oxide,16 silica,17,18 zeolites,19

and ionic liquids.20 Metal−organic frameworks (MOFs) has
recently emerged in this field owing to their high structural/
functional tunability, which offers multiple options to control
the nature/concentration of proton sources, as well as the
formation of an efficient H-bond network with the inclusion of
guests as charge carriers, for an efficient proton transfer.21−23

Inspired by the high conductivity of Nafion in relation with the
hydrophilicity of its terminal sulfonic acid groups, a few MOFs
containing pending−SO3Hmoieties grafted to the ligands were
elaborated using either one-pot or postfunctional synthesis
routes.24−32 These functionalized MOFs exhibit outstanding
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proton conductivity, even surpassing those of Nafion in some
cases.26−31 This high-level performance results from the ability
of the−SO3H groups to act as a strong H+ donors and to initiate
a continuous H-bonded network for the proton migration.
Unfortunately, to date these sulfonic-based MOFs rarely
combine competitive performances with good water/chemical
stability and environmental friendly and scalable synthesis
conditions. This clearly limits the promotion of this subclass of
MOFs at the application level. To circumvent this critical issue,
herein, we applied a multicomponent approach to a robust and
eco-friendly 2D MOF architecture with the objective to
deliberately conceive a platform of multivariate sulfonic-based
solids MIP-207-(SO3H-IPA)x-(BTC)1−x, resulting from the
gradual substitution of the trimesate 1,3,5-benzenetricarboxylate
(BTC) moieties by 5-SO3H-isophthalate (SO3H-IPA) deriva-
tives with their free sulfonic groups pointing toward the porosity.
The proton donor character of the pristine sample was steadily
tuned according to the mixed ligands ratio x, as illustrated by the
proton conductivity rise from 8.9 × 10−5 to 2.6 × 10−2 S cm−1 at
363 K/95% relative humidity (RH) with x increasing from 0.00
to 0.28. Decisively, this series of MOFs remains stable under
operating conditions, which further evidences that the multi-
variate strategy is appealing to design eco-compatible materials
that fulfill the target application criteria, i.e., high proton
conductivity coupled to good stability under working con-
ditions. The microscopic proton transfer mechanism in these
functionalized MOFs was further elucidated using ab initio
molecular dynamics (AIMD) simulations.

■ RESULTS AND DISCUSSION

The Ti-BTC MOF, where BTC refers to 1,3,5-benzenetricar-
boxylate moieties, also labeled as MIP-207 (MIP refers to
Materials of the Institute of Porous Materials from Paris), was

used as a building block for this study.33 This material was
prepared following the previously reported procedure,33 by
mixing Ti(iPrO)4 with 1,3,5-benzenetricarboxylic acid in an
acetic anhydride/acetic acid solution under reflux (see the
Experimental Section). The resulting crystalline solid, with the
chemical formula Ti8(μ2-O)8(acetate)8(BTC)4, is composed of
planar octameric Ti8 oxo-clusters, which are interconnected by
BTC linkers, thus forming a two-dimensional (2D) layer (see
Figure 1). The layer/layer cohesion is ensured by van der Waals
interactions between acetate groups and between water/water
and water/MOF under hydration conditions. The BTC organic
ligand behaves somehow as an isophthalate-type linker, with the
uncoordinated residual carboxylic function pointing toward the
voids, so that it is able to interact with guest molecules. This
ditopic bonding configuration further offers the opportunity to
modify the inner surface of Ti-BTC by substituting the BTC
linker with functionalized isophthalic acid (IPA) of similar
molecular size and enables the formation of equivalent angles
between the two connection sites. Typically, 5-SO3H-IPA was
deliberately selected to impart accessible and highly acidic
proton sources to the pristine solid. We thus systematically
prepared a series of mixed-ligand analogous MIP-207 solids,
labeled as MIP-207-(SO3H-IPA)x-(BTC)1−x, where x ranges
from 0.00 to 0.66, as confirmed by EDX and elemental analysis
[see Tables S1−S6 of the Supporting Information (SI)].
According to Figure 1d, similar PXRD patterns were recorded
for all MIP-207-(SO3H-IPA)x-(BTC)1−x derivatives, evidencing
that these MOFs are isostructural to the pristine MIP-207 with
similar cell parameters (see Table S2, SI). This further supports
that the partial replacement of the BTC linker by similar ligands
in terms of dimension and topology does not impact the crystal
structure of the starting material. All these samples were
maintained in the incubator used for the impedance measure-

Figure 1. Illustration of the MIP-207-(SO3H-IPA)x.(BTC)1−x structure: (a) viewed along the c-axis with the atom color codes of C in gray, O in red, S
in yellow, and Ti in pink; (b) 2D layered view with each layer highlighted by a distinct monocolor; (c) a zoomed view on the organization of −SO3H
and −CO2H moieties, where BTC ligands and SO3H-IPA substitutes are presented in blue and green, respectively; and (d) experimental PXRD
patterns of the solid with x = 0.00 (1), 0.06 (2), 0.16 (3), 0.28 (4), 0.44 (5), and 0.66 (6).
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ments at 373 K and 95% RH for 24 h, and their PXRD patterns
were subsequently collected to assess their structural robustness
under operating conditions. The structural integrity was
maintained for all samples up to x = 0.28, while the materials
with x = 0.44 and 0.66 were found to exhibit a significant loss of
crystallinity (see Figure S1, SI). MIP-207-(SO3H-IPA)0.44-
(BTC)0.56 got semipasty, while MIP-207-(SO3H-IPA)0.66-
(BTC)0.34 became liquid under the humidity conditions.
Accordingly, the proton-conducting behaviors of MIP-207-

(SO3H-IPA)x-(BTC)1−x with x up to 0.28 were further explored
by ac impedance spectroscopy under varying temperature (T)
and 95% RH (see Figure S3, SI). The conductivities (σ)
deduced from the analysis of the Nyquist plots recorded at 363
K/95% RH are illustrated in Figure 2a and listed in Table S7
(SI). As targeted, σ gradually increases with the SO3H-IPA
amount and rises by more than 2 orders of magnitude, i.e., from
8.9 × 10−5 to 2.6 × 10−2 S cm−1, for x varying from 0.00 to 0.28
in MIP-207-(SO3H-IPA)x-(BTC)1−x. This substantial increase
confirms the expected benefit of grafting sulfonic functions to
boost the proton conduction performance of Ti-BTC.
Importantly, the excellent level of performance for MIP-207-
(SO3H-IPA)0.28-(BTC)0.72 makes this material among the best
proton-conducting MOFs under these T/RH conditions,
around 10−2 S cm−1.21−23

Temperature dependence of the conductivity for MIP-207-
(SO3H-IPA)x-(BTC)1−x was evaluated at 95% RH from the
analysis of the Nyquist plots. All samples demonstrated a
significant increase of conductivity with temperature according
to the Arrhenius equation (Figure 2b). The corresponding
activation energy is 0.25 eV for the pristine Ti-BTC, which refers
to a Grotthus-like proton transfer mechanism (ΔE < 0.40 eV), as
regularly observed for water-mediated proton-conducting

MOFs bearing free carboxylic acid functions.21−23 Notably,
ΔE does not change for the ligand-substituted derivatives, i.e.,
neither with the pore walls’ decoration with the −SO3H groups
nor with the sulfonic groups’ concentration. This demonstrates
that the conductivity enhancement with the substitution ratio x,
as illustrated in Figure 2a, results from the increase of the
concentration of the strongest proton donor −SO3H, while the
topology of the continuous H-bonded network providing the H+

pathway is likely unchanged.
The best material, MIP-207-(SO3H-IPA)0.28-(BTC)0.72, was

further explored in-depth. Figure 3a depicts the proton
conductivity data collected over 24 h impedance measurements
during a cooling/heating cycle at 95% RH. The deviation
between the cooling and heating profiles is negligible, illustrating
the reversible conductive behavior of the material with any
memory effect as a prerequisite for further processing.
The role of water vapor on the conductivity performance of

MIP-207-(SO3H-IPA)0.28-(BTC)0.72 was characterized by re-
cording variable-RH impedance measurements at 363 K (see
Figure S4, SI). Figure 3b evidences the conductivity drop from
2.6 × 10−2 to 1.1 × 10−5 S cm−1 when the RH decreases from
95% to 35%. This observation strongly suggests that water
contributes to the proton transfer within the material.21−23 This
statement is confirmed by the insulating behavior of MIP-207-
(SO3H-IPA)0.28-(BTC)0.72 at the anhydrous state, as shown by
the characteristic profile of the impedanceNyquist plot recorded
at 363 K, which results from an incomplete semicircle combined
with high impedance values (see Figure S5, SI). This means that
the H+ long-range transfer from −SO3H donors to −CO2H or
−SO3H acceptors is highly improbable in the dry state, as
supported by the high activation energy for the proton
conductivity (ΔE = 1.11 eV, Figure S6 and Table S7, SI).

Figure 2. (a) Evolution of the conductivity (σ) for MIP-207-(SO3H-IPA)x-(BTC)1−x recorded at 363 K/95% RH vs the BTC substitution degree x.
(b) Arrhenius-type plot of the conductivity for MIP-207-(SO3H-IPA)x-(BTC)1−x under 95% RH, for x = 0 (1), x = 0.06 (2), x = 0.16 (3), and x = 0.28
(4). Dashed lines correspond to the linear least-squares fit.

Figure 3. (a) Arrhenius-type plot of the conductivity for MIP-207-(SO3H-IPA)0.28-(BTC)0.72 under 95% RH, for repeated cycles 1 and 2, under
cooling (blue) and heating (red). Lines correspond to the linear least-squares fit. (b) Humidity dependence of the conductivity for MIP-207-(SO3H-
IPA)0.28-(BTC)0.72 recorded at 363 K.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.1c03644
ACS Appl. Mater. Interfaces 2021, 13, 20194−20200

20196

http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03644/suppl_file/am1c03644_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03644/suppl_file/am1c03644_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03644/suppl_file/am1c03644_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03644/suppl_file/am1c03644_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03644/suppl_file/am1c03644_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03644/suppl_file/am1c03644_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03644?fig=fig3&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.1c03644?rel=cite-as&ref=PDF&jav=VoR


Accordingly, the introduction of guest molecules is a
prerequisite to promote the proton transfer into the pores of
the material. This suggests that, under RH conditions, the
interconnection between SO3H-proton donors and acceptors is
ensured by the water molecules through the creation of a
continuous H-bonded network. Molecular simulations were
further implemented to gain insight into the microscopic
mechanism describing the proton conduction performance of
MIP-207-(SO3H-IPA)0.28-(BTC)0.72. A structure model for
MIP-207-(SO3H-IPA)0.25-(BTC)0.75 was built considering that
25% of the BTC ligands were randomly substituted by−(SO3H-
IPA) and 25% of the acetates of the Ti−oxo cluster were also
replaced arbitrarily by H2O and OH moieties according to the
NMR results (see the Supporting Information). This structure
model was then geometry-optimized at the density functional
theory (DFT) level, while the cell parameters were fixed
according to the experimental PXRD data for MIP-207-(SO3H-
IPA)0.28-(BTC)0.72 (see Table S2, SI). Grand canonical Monte
Carlo (GCMC) simulations further evidenced that this structure
can host 60 water molecules per unit cell, in agreement with the
uptake deduced from the experimental adsorption isotherm, i.e.,
56.7 molecules/unit cell (see Figure S7, SI). This water-loaded
structure was then geometry-optimized at the DFT level and
used as a starting configuration for further AIMD simulations
(see the details in the Experimental Section). Analysis of the
AIMD trajectory over 10 ps revealed the formation of a
persistent 3D percolating hydrogen-bonded network that offers
an optimal situation for the long-range transfer of the proton
from the −SO3H function throughout the entire porosity of the
solid, with the adsorbed water molecules acting as charge
carriers. The radial distribution functions (RDFs) for the Ow−

OSO3H and Ow−Ow pairs (see Figure S9, SI) show a main peak at

∼2.7 and 2.9 Å, respectively, a signature of strong hydrogen
bonds between the sulfonic groups and the adsorbed water
molecules, as well as between the adsorbed species themselves.34

Moreover the RDFs for the other Ow−O pairs, with O
corresponding to the oxygen atoms of the −CO2H and of the

terminal −OH and −H2O groups, exhibit a first peak at 2.9−3.1
Å (see Figure S9, SI). This clearly manifests that these functional
groups can act as anchoring sites to ensure the formation of the
percolated hydrogen bond network. An illustration of the
resulting Grotthuss-like mechanism involved the proton transfer
in this water-mediated proton conducting MOF is provided in
Figure 4. The process starts with a disruption of the initial (O−
H)SO3H···OCO2H hydrogen bond formed between the SO3H and

CO2H groups facing each other, and there is a subsequent
reorientation of the proton of the−SO3Hgroup in order to form
a hydrogen bond with an adjacent adsorbed water molecule (see
Figure 4a,b). This proton is then transferred to the adsorbed
water molecule to form a H3O

+ species (see Figure 4c). This
hydronium ion thenmigrates toward a second water molecule to
form a Zundel species (H5O2

+), as shown Figure 4d. This H5O2
+

ion breaks apart to deliver a proton to a second water molecule,
which forms a new H3O

+ ion, as shown in Figure 4e, that further
forms another Zundel species (Figure 4f) and so forth. We
evidenced that the release of the acidic protons from the−SO3H
groups occurs as fast as in Nafion,35 typically after ∼400 fs, as
illustrated in Figure 4. Noteworthy, the same scenario involving
the −CO2H group rather than −SO3H as the proton donor was
never observed over the whole AIMD trajectory. This clearly
supports that the proton transfer exclusively proceeds via the
−SO3H group, since this group is more acidic than the−CO2H.
Interestingly, brief disruptions in the extended hydrogen bond
networks can happen, which however recover quickly,
maintaining an ideal pathway. Notably, depending on the
spatial organization of the adsorbed water molecules around the
acidic protons of the −SO3H groups, we observed that the
protons of some −SO3H groups show springlike shuttle
movements featuring interchangeable donor−acceptor hydro-
gen bond configurations with the neighboring −CO2H groups
(configurations b and c, as depicted in Figure S10, SI). A very
similar behavior can also be observed between two −CO2H
groups facing each other (see Figure S11, SI). This local motion
refers to the dielectric relaxation behavior of the proton, which

Figure 4. Illustration of the evolution of the hydrogen-bonded network and the characteristic propagation of one proton issued from the−SO3Hgroup
of the ligand and its release toward the pores of MIP-207-(SO3H-IPA)0.25-(BTC)0.75 as captured from the AIMD simulations performed at 400 K: (a)
initial OSO3H···OCO2H hydrogen-bonded complex, (b) formation of a strong hydrogen bond between the proton of the −SO3H group and an adjacent

adsorbed water molecule observed at 306 fs, (c) transfer of the proton to the adjacent water molecule and creation of a hydronium ion (H3O
+)

observed at 402 fs, (d) formation of a Zundel species (H5O2
+) observed at 465 fs, (e) interconversion of a Zundel species to a new hydronium ion

observed at 490 fs, and (f) subsequent formation of Zundel species with the neighboring water molecule observed at 570 fs.
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locally switches between two equilibrium positions. Since this
process does not involve any water molecule’s assistance, it is
likely to occur at the anhydrous state, leading to the absence of
long-range proton transport, as experimentally evidenced by the
incomplete semicircle profile of the Nyquist plot in Figure S5
(SI).

■ CONCLUSIONS

A series of proton-conducting mixed-linker MOFs was devised
with proton conduction performances tuned by means of a
multivariate strategy that enabled a gradual substitution of the
1,3,5-benzenetricarboxylate (BTC) ligands of the pristine Ti-
based MOF (MIP-207) by SO3H-isophtalate (SO3H-IPA)
secondary linkers as precursors. MIP-207-(SO3H-IPA)0.28-
(BTC)0.72 was identified as the optimal candidate combining a
remarkable proton conductivity, i.e., σ = 2.6× 10−2 S cm−1 at 363
K/95% RH, and a very good stability under operating
conditions. The corresponding proton transfer mechanism was
elucidated at the microscopic scale by ab initio molecular
dynamics simulations, which demonstrated a fast proton release
from −SO3H groups to the adsorbed water molecules and the
subsequent formation of a percolated H-bonded network along
the porosity of the MOF. This study paves the way toward the
development of alternative proton conductors incorporating the
optimal features to achieve performance as high as the
benchmark Nafion while addressing the critical issue of stability
under working conditions.

■ EXPERIMENTAL SECTION

Synthesis of Ti-(SO3H-IPA)x-(BTC)1−x Derivatives. 1,3,5-Benze-
netricarboxylic acid (BTC) and 5-LiSO3−IPA, the amounts of which
were adjusted for each sample according to Table S1 (SI), were mixed
into a round-bottom flask (50 mL). Acetic anhydride (10 mL) was
added to disperse the solid with stirring at 298 K for 5 min, followed by
adding acetic acid (10 mL). The system was heated to 423 K for 24 h.
After cooling down to 298 K, the reaction system was filtered to collect
the crude Ti-(SO3H-IPA)x-(BTC)1−x product. Centrifugation was
applied when the sample particle was too small to do filtration. The
sample was washed with boiling acetone for activation. All the
chemicals were purchased from commercial sources and used without
further purifications.
Powder X-ray Diffraction. The PXRD patterns of all materials

solids in their pristine forms and after beingmaintained in the incubator
used for the impedance measurements at 363 K/95% RH for 24 h were
collected on a PANalytical X’Pert equipped with an X’Celerator
detector and using a wavelength of λ = 1.5406 Å from a generator
operating at 40 kV and 30 mA.
SEM-EDX. SEM-EDX results were recorded with an FEI Magellan

400 scanning electron microscope.
NMR. 1H NMR spectra were recorded on a Bruker Avance 300

spectrometer.
Elemental Analysis. Elemental analysis (EA) was performed using

a Flash EA 1112 (Thermofinnigan) apparatus. EA results, listed in
Table S4 (SI), are consistent with data deduced from EDX and NMR.
Conductivity Measurements. Impedance was measured using a

Solartron analytical Modulab XMMTS, over a frequency range from F
= 0.01 Hz to 1 MHz under 20 mV of applied ac voltage. The
temperature (298−363 K) and the relative humidity [35%−95%] were
fixed using an Espec Corp. SH-221 incubator. Prior to impedance
recording, the solid was equilibrated under fixed T/RH conditions for
24 h. Themeasurements were performed using powders introduced in a
homemade sample holder, allowing the use of the “two-probe”method
for the electrical measurements. The resistance value of the studied
solids was deduced from the analysis of the Nyquist plot [−Z″ = f(Z′)].
For the Nyquist plots showing a well-defined semicircle (see Figures

S3−S5, SI), ZView software was applied to fit impedance data sets with

equivalent circuits, assembling the bulk resistance R and the bulk
nonideal capacitance CPE, while a second constant phase element
CPE-2 was alternatively added to account for the electrodes if
applicable.

For the very lowly resistive solids, the Nyquist plot results only in the
tail end of a semicircle at high frequency, while at lower frequency a
capacitive tail is observed, which prevents the use of the equivalent-
fitting procedure (see Figures S3−S5, SI). In that case, the resistance
was evaluated from the real-axis intercept of the Nyquist plot.

The sample conductivity value was obtained using σ R
l
S

1= × , where
l and S are the sample thickness and area, respectively.

According to the Arrhenius equation T( ) expT
E
kT

0σ = [ ]σ −Δ ,
where k is the Boltzmann constant, the linear fitting of ln(σT) versus
1/T allowed us to determine the activated energyΔE characterizing the
proton transport process.

DFT Geomentry Optimization. The pristine and fully water-
loaded MIP-207-(SO3H-IPA)0.25-(BTC)0.75 mixed-ligand structure
models were optimized using periodic DFT calculations considering
the Quickstep module36 of the CP2K program37,38 with the Gaussian
plane wave (GPW) formalism. The general gradient approximation
(GGA) to the exchange−correlation functional according to Perdew−
Burke−Ernzerhof (PBE)39 was combined with Grimme’s DFT-D3
semiempirical dispersion corrections.40,41Molecularly optimized triple-
ζ plus valence polarized Gaussian-type basis sets (TZVP-MOLOPT)
were applied to all atoms, the Ti metal centers excepted, for which
shorter-range double-ζ plus valence polarization functions (DZVP-
MOLOPT) were considered.42 The pseudopotentials derived by
Goedecker, Teter, and Hutter (GTH)43−45 were used to describe the
interactions between core electrons and valence shells of the atoms. The
auxiliary plane wave basis sets were truncated at 400 Ry.

Monte Carlo Simulations. Grand canonical Monte Carlo
(GCMC) calculations were performed at 363 K and 95% RH to
construct a starting structure model for the fully hydrated MIP-207-
(SO3H-IPA)0.25-(BTC)0.75. Four conventional unit cells (1 × 1 × 4)
were considered for the simulation box, while the atoms were
maintained fixed at their initial positions. The water/MOF interactions
were described by a combination of site-to-site Lennard-Jones (LJ)
contributions and Coulombic terms. The LJ parameters for the atoms
in the inorganic and organic part of the framework were described using
a mixed set of universal force field (UFF)46 and DREIDING force
field47 parameters, respectively (see Table S8, SI). The TIP4P/2005
potential model48 corresponding to a microscopic representation of
four LJ sites was considered to describe the water molecules (see Table
S9, SI). In this simulation, all of the hydrogen atoms of the framework
interact with the adsorbate water molecules via the Coulombic
potential only. Atomic partial charges of the framework were derived
by applying the repeat fitting strategy for the periodic system as
implemented in the CP2K code37,38,49 (see Figure S7 and Table S8, SI).
Short-range dispersion forces were truncated at a cutoff radius of 12 Å,
while the interactions between unlike force field centers were treated by
means of the Lorentz−Berthelot combination rule. The long-range
electrostatic interactions were handled using the Ewald summation
technique. Typically, 2 × 108 Monte Carlo steps have been used for
both equilibration and production runs. These MC calculations were
performed using the Complex Adsorption and Diffusion Simulation
Suite (CADSS) code.50

Ab Initio Molecular Dynamics. Born−Oppenheimer first-
principles MD simulations were performed on the DFT-optimized
fully water-loaded MIP-207-(SO3H-IPA)0.25-(BTC)0.75 structure
model using the CP2K package at the same level of theory and
associated settings as described above for the geometry optimization.
These MD simulations were performed for 10 ps in the NVT ensemble
with a Nose−́Hoover thermostat using a time step of 0.5 fs at 400 K.
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